Variance in Death and Its Implications for Modeling and Forecasting Mortality.
نویسندگان
چکیده
The slope and curvature of the survivorship function reflect the considerable amount of variance in length of life found in any human population. Part is due to the well-known variation in life expectancy between groups: large differences according to race, sex, socioeconomic status, or other covariates. But within-group variance is large even in narrowly defined groups, and changes substantially and inversely with the group average length of life. We show that variance in length of life is inversely related to the Gompertz slope of log mortality through age, and we reveal its relationship to variance in a multiplicative frailty index. Our findings bear a variety of implications for modeling and forecasting mortality. In particular, we examine how the assumption of proportional hazards fails to account adequately for differences in subgroup variance, and we discuss how several common forecasting models treat the variance along the temporal dimension.
منابع مشابه
Modeling Gold Volatility: Realized GARCH Approach
F orecasting the volatility of a financial asset has wide implications in finance. Conditional variance extracted from the GARCH framework could be a suitable proxy of financial asset volatility. Option pricing, portfolio optimization, and risk management are examples of implications of conditional variance forecasting. One of the most recent methods of volatility forecasting is Real...
متن کاملNber Working Paper Series Variance in Death and Its Implications for Modeling and Forecasting Mortality
Tuljapurkar: Morrison Professor of Population Studies, Department of Biological Sciences, Stanford University, [email protected]. Edwards: Assistant Professor of Economics, Queens College and the Graduate Center, City University of New York, and the National Bureau of Economic Research, [email protected]. Tuljapurkar acknowledges support from NIA grant 1P01 Edwards acknowledges support from...
متن کاملImplications of Cointegration for Forecasting: A Review and an Empirical Analysis
Cointegration has different theoretical implications for forecasting. Several empirical studies have compared the out of sample forecasting performance of cointegrted VECMs against unrestricted VARs in levels and in differences. The results of these studies have been generally mixed and inconclusive. This paper provides a comprehensive review over the subject, and also examines the effects...
متن کاملApplication of a Statistical Model to Forecast Drowning Deaths in Iran
Background/aim: One of the indicators for measuring the development of a country is its death rate caused by accidents and disasters. Every year, many people in Iran are drowned for various reasons. The aim of this study was to predict the trend of drowning mortality in Iran using statistical models. Method: This research was a longitudinal study using time-series data of drowning deaths obta...
متن کاملModeling and forecasting demand for petrochemical products of Persian Gulf Petrochemical Industries Company (PGPIC)
This article models and forecasts the domestic and exports demand of products of Persian Gulf Petrochemical Industries Company (PGPIC) using a dynamic panel data model. The model is estimated using GMM method and domestic and export price index, the quantity demanded of the company's products, the global price index of alternative products and the income of demandant companies for the PGPIC'...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Demographic research
دوره 24 شماره
صفحات -
تاریخ انتشار 2011